\(\int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [182]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 106 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a B \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

2*a*B*sin(d*x+c)*sec(d*x+c)^(1/2)/d+2*a*(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/
2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2*a*(A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1
/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {4082, 3872, 3856, 2719, 2720} \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a B \sin (c+d x) \sqrt {\sec (c+d x)}}{d} \]

[In]

Int[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*(A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(A + B)*Sqrt[Cos[c + d*
x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a B \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+2 \int \frac {\frac {1}{2} a (A-B)+\frac {1}{2} a (A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a B \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+(a (A-B)) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+(a (A+B)) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {2 a B \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\left (a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\left (a (A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a B \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.86 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.73 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a \sqrt {\sec (c+d x)} \left ((A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+B \sin (c+d x)\right )}{d} \]

[In]

Integrate[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*Sqrt[Sec[c + d*x]]*((A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (A + B)*Sqrt[Cos[c + d*x]]*Ell
ipticF[(c + d*x)/2, 2] + B*Sin[c + d*x]))/d

Maple [A] (verified)

Time = 16.81 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.26

method result size
default \(-\frac {2 a \left (A \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+B \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(240\)
parts \(-\frac {2 \left (a A +B a \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B a \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(458\)

[In]

int((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*a*(A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*B*cos(1/
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))+B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*
x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.33 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {-i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A - B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} {\left (A - B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, B a \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{d} \]

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*(A + B)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*(A + B)*a*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + I*sqrt(2)*(A - B)*a*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - I*sqrt(2)*(A - B)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*B*a*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=a \left (\int \frac {A}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

a*(Integral(A/sqrt(sec(c + d*x)), x) + Integral(A*sqrt(sec(c + d*x)), x) + Integral(B*sqrt(sec(c + d*x)), x) +
 Integral(B*sec(c + d*x)**(3/2), x))

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(1/2), x)